堆排序

使用进行排序的算法,分为以下几个步骤:

  1. 建堆,即堆化的过程
  2. 取出堆顶的元素(最大或最小值),将剩余的 n - 1 个节点进行堆化操作;重复以上步骤,直到所有元素排序完毕

堆排序由于需要交换父子节点的位置,所以是不稳定的排序算法。 空间复杂度:堆排序只需要极个别的临时存储空间,所以是原地排序算法时间复杂度O(nlogn)

代码实现

/**
 * 堆排序: Java
 *
 * @author skywang
 * @date 2014/03/11
 */
 
public class HeapSort {
 
    /* 
     * (最大)堆的向下调整算法
     *
     * 注: 数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
     *     其中,N为数组下标索引值,如数组中第1个数对应的N为0。
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
     *     end   -- 截至范围(一般为数组中最后一个元素的索引)
     */
    public static void maxHeapDown(int[] a, int start, int end) {
        int c = start;            // 当前(current)节点的位置
        int l = 2 * c + 1;        // 左(left)孩子的位置
        int tmp = a[c];            // 当前(current)节点的大小
 
        for (; l <= end; c=l, l=2*l+1) {
            // "l"是左孩子,"l+1"是右孩子
            if ( l < end && a[l] < a[l+1])
                l++;        // 左右两孩子中选择较大者,即m_heap[l+1]
            if (tmp >= a[l])
                break;        // 调整结束
            else {            // 交换值
                a[c] = a[l];
                a[l]= tmp;
            }
        }
    }
 
    /*
     * 堆排序(从小到大)
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     n -- 数组的长度
     */
    public static void heapSortAsc(int[] a, int n) {
        int i,tmp;
 
        // 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
        for (i = n / 2 - 1; i >= 0; i--)
            maxHeapDown(a, i, n-1);
 
        // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
        for (i = n - 1; i > 0; i--) {
            // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最大的。
            tmp = a[0];
            a[0] = a[i];
            a[i] = tmp;
            // 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
            // 即,保证a[i-1]是a[0...i-1]中的最大值。
            maxHeapDown(a, 0, i-1);
        }
    }
 
    /* 
     * (最小)堆的向下调整算法
     *
     * 注: 数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
     *     其中,N为数组下标索引值,如数组中第1个数对应的N为0。
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
     *     end   -- 截至范围(一般为数组中最后一个元素的索引)
     */
    public static void minHeapDown(int[] a, int start, int end) {
        int c = start;          // 当前(current)节点的位置
        int l = 2*c + 1;        // 左(left)孩子的位置
        int tmp = a[c];         // 当前(current)节点的大小
 
        for (; l <= end; c=l,l=2*l+1) {
            // "l"是左孩子,"l+1"是右孩子
            if (l < end && a[l] > a[l+1])
                l++;        // 左右两孩子中选择较小者
            if (tmp <= a[l])
                break;        // 调整结束
            else {            // 交换值
                a[c] = a[l];
                a[l]= tmp;
            }
        }
    }
 
    /*
     * 堆排序(从大到小)
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     n -- 数组的长度
     */
    public static void heapSortDesc(int[] a, int n) {
        int i,tmp;
 
        // 从(n/2-1) --> 0逐次遍历每。遍历之后,得到的数组实际上是一个最小堆。
        for (i = n / 2 - 1; i >= 0; i--)
            minHeapDown(a, i, n-1);
 
        // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
        for (i = n - 1; i > 0; i--) {
            // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最小的。
            tmp = a[0];
            a[0] = a[i];
            a[i] = tmp;
            // 调整a[0...i-1],使得a[0...i-1]仍然是一个最小堆。
            // 即,保证a[i-1]是a[0...i-1]中的最小值。
            minHeapDown(a, 0, i-1);
        }
    }
 
    public static void main(String[] args) {
        int i;
        int a[] = {20,30,90,40,70,110,60,10,100,50,80};
 
        System.out.printf("before sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");
 
        heapSortAsc(a, a.length);            // 升序排列
        //heapSortDesc(a, a.length);        // 降序排列
 
        System.out.printf("after  sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");
    }
}
 

为什么堆排序不如快速排序

  1. 快速排序在执行过程中,是局部顺序访问数据元素;而堆排序是跳着访问的,对 CPU 缓存不友好。
  2. 对于同样的数据,堆排序的数据交换次数多于快速排序,大致是由于堆排序在执行过程中需要不停堆化,会将相对有序的数据重新变得无序。